《机器中的幽灵:金融市场中的人工智能、风险及监管》是Euromoney Institutional Investor Thought Leadership 的一项调查报告,他们对全球金融机构中的 424 名高级管理人员进行了调查问卷,研究人工智能/机器学习在金融市场的风险以及监管问题。
本文结构:
一、所有系统向前进(Go)
二、从快速思维到智能思维
三、起作用的人工智能
四、从摩尔定律到墨菲定律
五、结论
六、关于本调查
七、附录(完整调查结果)
一、所有系统向前进(Go)
2016 年 3 月 15 日,一个名为 AlphaGo 的人工智能程序在围棋中击败了人类世界冠军。围棋游戏非常复杂,其走法存在的可能性数量总和比宇宙原子数量还高出几百个数量级。AlphaGo 最终以 4-1 的成绩取得了绝对的胜利。此外在识别模糊模式、学习新模式和调整策略以应对变化中的环境等方面,AlphaGo 也展现出人工智能的一些显著进步。
然而,就在 AlphaGo 取得胜利两周之后,一个名叫 Tay 的聊天机器人就暴露出了人工智能黑暗的一面。 Tay 原本是为了与人们进行友好的网络交谈,并用微软服务协助人类。Tay 独特的设计特点使她可以从在线交互中进行学习。在 Tay 公开发布后,Twitter 用户铺天盖地的谩骂和煽动性语言接踵而来,这教给了 Tay 错误的东西。该程序被败坏,变得口喷种族主义、性别歧视和排外言论;这揭示了人工智能设计和编程中潜在缺陷,以及人工智能和自然智能之间令人不安的互动。
这两件事揭示了引入人工智能所存在的矛盾。AlphaGo 这样的程序展示了人工智能可以如何分析海量数据、识别复杂模式,赋予人类新的分析能力。相反地,Tay 的恶意故障提醒着我们,这项技术还远未达到万无一失的程度,尤其是当与人类交互时。
人工智能将带来的不是不计后果的速度或失控,而是一个具有史无前例深度和广度的洞见,以及依照信息行动并从行动中学习的能力。
在对全球金融机构和金融科技企业的 424 位高管进行调查、对该领域的一些顶尖专家进行采访之后,我们发现,随着人工智能在整个金融市场开疆扩土,这一矛盾也同样很明显。
许多人将人工智能看作是可以帮助改善金融机构风险管理的工具,比如,进行更为深度的投资组合风险评估和更透彻、更全面、更清楚的信用风险评估。在这些应用中,人工智能将带来的不是不计后果的速度或失去控制,而是具有前所未有深度、广度的洞见,以及依照信息行动并从行动中学习的能力。
然而,许多专家也承认人工智能的使用存在一定的风险。这部分源于不确定性——毕竟在包括交易、投资组合管理和信用评估等许多应用中,人工智能尚处于实验阶段。因此,安全、隐私和数据质量上还萦绕着算法出故障的风险和担忧,这导致了对新的监管的呼吁。
而人们甚至更担忧人工智能的监管对策。在监管者是否存在足够的知识和技能以跟上新的金融技术的问题上,本次调研的参与者明显缺乏信心。事实上,调查参与者怀疑监管者才刚刚开始了解人工智能对金融市场和公司的潜在影响。目前而言,他们关注的重点仍然是从教训中吸取经验(fighting the last war ),识别人类直接滥用技术的违反合规行为。他们注意力开始转向算法的正当性,而这也是未来几年制定任何关于机器学习规则的重点。
调查中,大量金融机构对监管机构了解人工智能相关的法律风险上没有信心。但鉴于人工智能在这些部门的使用处于初期阶段,这可能也并不令人惊讶。比如,由于人工智能驱动的模型能够收集和分析更大体量的数据,数据和隐私风险也将随之增长。知识产权纠纷也很有可能增加,因为算法的所有权会导致企业和监管部门之间的摩擦。最后在人工智能出故障和编程错误的可能事件中,合同和诉讼风险也会涌现。
人工智能和机器学习毫无疑问将改变该行业所需的员工人数和技能性质。调查中,有明显少数的受访者担心,在未来几年中其对劳动力的影响是负面的。但大规模的迁移是一个长期过程——接近 70% 的人认为,人工智能在 15 年内会给他们自己的工作带来彻底或很大程度上的改变。即使是在金融交易这个自动化已经得到了广泛使用的领域,人类角色在算法验证、监控、合规等领域仍然是很关键的。目前,很少人认为,机器学习模型可以或应该完全独立于人类控制地驱动金融市场业务。
二、从快速思维到智能思维
购买《华尔街计算机评论》1987 年 6 月刊的人将会知道围绕金融市场中的人工智能的讨论不新鲜事。其封面上显眼地写着:「教计算机模拟伟大的思想家」,同时还搭配着一张苏格拉底为一群计算机听众讲学的图片,即使 30 年前就已经有基于人工智能的交易应用的计划了。事实证明,这些早期应用中许多是更接近理论化的而非实用化的。
尽管以前有一轮又一轮的炒作,但一些评论家认为,这次对人工智能重燃的兴趣是合理的。计算能力的持续快速发展以及计算成本的显著下降让人工智能应用更加实用。社交网络、智能手机和可穿戴消费设备的增长也带来了数据数量和可用性的爆发——这些都变成了优化人工智能算法的养料。
从金融机构、技术和金融科技公司对人工智能投资的增长可以看出这种重燃的兴趣。BlackRock、Two-Sigma 、 Renaissance Technologies 等基金管理公司一直忙于在全世界挖角最好的数据科学家。它们与越来越多的科技公司竞争和合作,其中包括 Context Relevant、Sentient Technologies 和 Kensho,以及谷歌、Facebook 、微软等人工智能巨头。仅在 2015 年,这些公司就在人工智能研究、收购和人才上花费了超过 85 亿美元。
在交易和投资管理中,Aidiya 和 Sentient Technologies 这样的公司是人工智能交易程序的先驱。它们使用机器学习技术和进化算法的结合来浓缩巨量数据以识别隐晦的模式,这是其它公司还未实现的。和通过人类手动部署算法更新的传统量化交易形式相反,许多人工智能软件程序能自动且独立于人类干预地学习和更新它们的模型。
人工智能交易程序的另一个特点是差异化的重要性。正如金融咨询公司 The Thalesians 的联合创始人 Saeed Amen 说的那样:「机器学习的好处在于它能让交易者发现那些不易察觉的关系,因此不用再和其他市场参与者进行贴身肉搏去争夺这些交易机会。」
这推动了差异化,将人工智能和高频交易(HFT)等其它形式的算法交易区分开。例如,高频交易是关于速度的,而机器学习是关于见解的深度和广度的。「这场机器学习革命,是从急剧扩大的可用数据和信息中识别复杂的模式,从而做出任何视角来看都是最优秀的决策。」金融行业新闻和分析工具提供商 RavenPack 首席数据科学家 Peter Hafez 说,「该市场正从更快转向更智能。」
创新的潜力将因此变得显著——不仅是在交易中,而且还在投资建议和贷款等金融行业的其它部分。变化不会马上到来,但它会来的。按照比尔·盖茨的名言警句:「我们总是高估未来两年内将发生的变化和低估未来十年内将发生的变化。」我们的调查表明,人工智能会导致类似的一系列金融市场变革。